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Introduction
Information space exploration

DataHyperCube: prototype in Ouvrard et al.
[2018a]

Multimedia indexing

Generation of similar image sets Xu et al.
[2016] c,IEEE 2016

Topic hypergraph Zhu et al. [2017] c, IEEE
2017
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In this paper

Figure 1: Search: 3D Graph: Organisations

Problem statement
How to highlight important information in a
co-occurence network ?

RQ
Can we find a network model and a diffusion
process that:

rank vertices

and rank set / multiset of vertices

Contribution
A theoretical framework that allows easy
handling of weights on vertices => family of
multisets => hb-graphs
Intermediate step: a diffusion process that
supports the retrieval of information:

not only on vertices
but also on hb-edges.
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Hypergraphs

From graphs to hypergraphs

Hypergraphs ≡ generalisation of graphs
to multiple nodes’ links

Hypergraphs introduced by Berge and
Minieka [1973].

Definition
Bretto [2013]:

Hypergraph H: a family of subsets of a
vertex set

Hyperedges: elements of the family

Two visions

set of elements of power set of nodes
 set view

extension of graphs n-adic
relationship view
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Diffusion in hypergraphs

RW with weighted hyperedges
Zhou et al. [2007], Ducournau and Bretto
[2014]:

p(ek chosen) ∝ weight

p(vertex in ek) uniform

p(vi, vj) =
p∑

k=1
we (ek)

hik

di
×
hjk

δk

stationary state => π (vi) ∝ d (vi).

RW with weighted vertices
Bellaachia and Al-Dhelaan [2013]:

hyperedge based vector of weights on
vertices

p (vi chosen in ek) ∝ wek (vi)
application to conference proceedings
=> ranking of words by the random walk

An application to Multimedia Indexing
Xu et al. [2016]: multi-feature indexing of images to help to retrieval

Each image associated to n most similar images => hyperedges

Hyperedges weighted by average similarity

Hypergraph separated into k sub-hypergraphs by spectral approach

RW on each subhypergraph => significant images => build a revert index
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Multisets

Multiset and operations

Multiset: a universe and a multiplicity function
Am = (A,m)
Natural multiset: the range of the multiplicity
function is a subset of N.

In natural multisets: two views:

weighted set
collection of objects

Support of the multiset: elements of the
universe that have non zero multiplicity

m-cardinality of a multiset Am: sum of all
multiplicity of elements of A.

Operations on multisets exist:

Inclusion allows definition of submset
Union, intersection and sum

More in Singh et al. [2007].

Photo from https://www.pexels.com/photo/sailboats-
racing-163318/

A = {boat, ocean, sunset,
land}

m (boat) = 6
m(ocean) = 1
m(sunset) = 0
m (land) = 1
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Hb-graphs: extending hypergraphs

Hyper-Bag-graph or hb-graph

Hb-graph: family of multisets - called
hb-edges - with:

same universe V , called vertex set.
support a subset of V .
each hb-edge has its own multiplicity
function.

Natural hb-graph: when all multiplicity
functions have their range included in N
Support hypergraph: hypergraph of the
support of the multisets

Star of a vertex: multiset of all hb-edges
where the vertex is, with a multiplicity the
vertex multiplicity in this hyperedge

m-degree of a vertex: m-cardinality of the
star of this vertex

hypergraph: natural hb-graph with
multiplicity function ranges in {0, 1}

Photos from https://www.pexels.com/photo/sailboats-racing-163318/
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Hb-graphs: extending hypergraphs

Photos from https://www.pexels.com/photo/sailboats-racing-163318/
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Diffusion by exchange in hb-graphs

Principle

t t+ 1
2 t+ 1

vertices to hb-edges hb-edges to vertices

vertices
vi at
αt (vi) δεt+ 1

2
(ej | vi)

ej reaches
εt+ 1

2
(ej)

δαt+1 (vi | ej)

vi reaches
αt+1 (vi)

hb-edges

Figure 2: Diffusion by exchange: principle Ouvrard et al. [2018b] c, IEEE 2018

δεt+ 1
2

(ej | vi) =
mj (vi)w (ej)
dw,m (vi)

αt (vi) .

δαt+1 (vi | ej) =
mj (vi)w (ej)

#mej
εt+ 1

2
(ej) .
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Results and evaluation

Methodology

2 parts in experimentation:

generation of random hb-graphs => validation of the approach
comparison to a classical random walk

Visualisation of the hb-graphs generated: highlight hb-edges and vertices

Eccentricity in a graph: e (v0) = max
v∈V

min l (path (v, v0))

=> extension to hb-graph straightforward:

requires strict path in a hb-graph
link between strict path and path in the support hypergraph

Evaluation using relative eccentricity between vertices in S ⊂ V and V \S; if vertices are
not connected eccentricity is at −∞
S built using a threshold sV on α value of vertices in V:

above: in S
below: in V \S
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Visualisation

Visualisation of exchange-based diffusion

Figure 3: From Ouvrard et al. [2018b] c, IEEE 2018

On example

548 vertices

300 hb-edges

5 groups

10 vertices in
between the 5 groups
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Results I
Diffusion by exchange
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Figure 4: Alpha value of vertices at step 5 and
(m-)degree of vertices. Ouvrard et al. [2018b] c,

IEEE 2018

Random walks
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Random walk by number of vertex visits: m-degree
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Figure 5: Rank obtained by 100 RW after vertex
total discovery and (m-)degree of vertices Ouvrard

et al. [2018b] c, IEEE 2018
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Results II

Diffusion by exchange: Epsilon value of hb-edge at stage 4.5
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Figure 6: Epsilon value of hb-edge at stage 4+ 1
2 and (m-)cardinality of hb-edge. Ouvrard et al.

[2018b] c, IEEE 2018

5 iterations in diffusion exchange: 0.009 s

100 RW with total covering: take 6.31 s
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Future work and Conclusion

Conclusion

Possibility of using hb-graphs for highlighting networks

Intermediate step of the process allows additional information

Future work

Applications to develop:

multimedia indexing
information retrieval

Strong basis to refine the approach of Xu et al. [2016]
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Thank you

Questions?
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