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Introduction

Information space exploration | Multimedia indexing
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In this paper

Can we find a network model and a diffusion
process that:

W rank vertices
B and rank set / multiset of vertices

Contribution

A theoretical framework that allows easy
handling of weights on vertices => family of

. o multisets => hb-graphs
Figure 1: Search: 3D Graph: Organisations  |ntermediate step: a diffusion process that
supports the retrieval of information:

W not only on vertices
B but also on hb-edges.

Problem statement

How to highlight important information in a
co-occurence network ?



Hypergraphs
From graphs to hypergraphs

Bretto [2013]:

xrv\\ B Hypergraph #: a family of subsets of a
v / A\ vertex set
1 ay Hyperedges: elements of the famil
/ ‘ [ | eredges: elements of the fami
v, xv, - | yperedg y
~) 7 g 4 ,/
v XV o A
AN : \x\ Two visions
) \ XV B set of elements of power set of nodes
\% - ~ set view

B extension of graphs ~ n-adic
relationship view

B Hypergraphs = generalisation of graphs
to multiple nodes’ links

B Hypergraphs introduced by Berge and
Minieka [1973].



Diffusion in hypergraphs
RW with weighted hyperedges | RW with weighted vertices

Zhou et al. [2007], Ducournau and Bretto Bellaachia and Al-Dhelaan [2013]:
AIIF B hyperedge based vector of weights on
B p(ex chosen) o weight vertices
W p(vertex in eg) uniform W p(v; chosen in ey) o< we,, (v;)
2 hik  hjk W application to conference proceedings

B p(vi,v;) = Y we (ep)

k=1
W stationary state => 7 (v;) o< d (v;).

An application to Multimedia Indexing

Xu et al. [2016]: multi-feature indexing of images to help to retrieval

d; n => ranking of words by the random walk

B Each image associated to n most similar images => hyperedges

B Hyperedges weighted by average similarity

B Hypergraph separated into k£ sub-hypergraphs by spectral approach

B RW on each subhypergraph => significant images => build a revert index



Multisets

Multiset and operations

B Multiset: a universe and a multiplicity function

Am = (A,m)

Natural multiset: the range of the multiplicity

function is a subset of N.
In natural multisets: two views:

B weighted set
B collection of objects

Support of the multiset: elements of the
universe that have non zero multiplicity

m-cardinality of a multiset A,,: sum of all
multiplicity of elements of A.

Operations on multisets exist:

B Inclusion allows definition of submset
B Union, intersection and sum

More in Singh et al. [2007].

Photo from https://www.pexels.com/photo/sailboats-
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A = {boat, ocean, sunset,
land}

m (boat) = 6

m(ocean) =

m(sunset) =0
m (land) =
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Hb-graphs: extending hypergraphs

Hyper-Bag-graph or hb-graph

B Hb-graph: family of multisets - called
hb-edges - with:

B same universe V/, called vertex set.
B support a subset of V.

B each hb-edge has its own multiplicity - F‘ ¥
function. i || el L S

B Natural hb-graph: when all multiplicity
functions have their range included in N

B Support hypergraph: hypergraph of the
support of the multisets

<

B Star of a vertex: multiset of all hb-edges }
where the vertex is, with a multiplicity the :
vertex multiplicity in this hyperedge

B m-degree of a vertex: m-cardinality of the
star of this vertex

B hypergraph: natural hb-graph with
multiplicity function ranges in {0, 1}

Photos from https://www.pexels.com/photo/sailboats-racing-163318/
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Hb-graphs: extending hypergraphs

Photos from https://www.pexels.com/photo/sailboats-racing-163318/
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Diffusion by exchange in hb-graphs
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Figure 2: Diffusion by exchange: principle Ouvrard et al. [2018b] (©) IEEE 2018
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Results and evaluation

Methodology

W 2 parts in experimentation:

B generation of random hb-graphs => validation of the approach
B comparison to a classical random walk

B Visualisation of the hb-graphs generated: highlight hb-edges and vertices
B Eccentricity in a graph: e (vo) = e min ! (path (v, vp))
vE
=> extension to hb-graph straightforward:

B requires strict path in a hb-graph
B link between strict path and path in the support hypergraph

B Evaluation using relative eccentricity between vertices in S C V and V'\S; if vertices are
not connected eccentricity is at —oco

B S built using a threshold sy, on « value of vertices in V:

H above: in S
W below: in V\S



Visualisation of exchange-based diffusion

B 548 vertices
T ‘ W 300 hb-edges
B 5 groups

B 10 vertices in
between the 5 groups

Figure 3: From Ouvrard et al. [2018b] © IEEE 2018



Results |
Diffusion by exchange Random walks

Random walk by number of vertex visits: m-degree
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Figure 4: Alpha value of vertices at step 5 and Figure 5: Rank obtained by 100 RW after vertex
(m-)degree of vertices. Ouvrard et al. [2018b] © total discovery and (m-)degree of vertices Ouvrard
IEEE 2018 et al. [2018b] © IEEE 2018



Results Il

Diffusion by exchange: Epsilon value of hb-edge at stage 4.5
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Figure 6: Epsilon value of hb-edge at stage 4+% and (m-)cardinality of hb-edge. Ouvrard et al.
[2018b] © IEEE 2018

W 5 iterations in diffusion exchange: 0.009 s
B 100 RW with total covering: take 6.31 s



Future work and Conclusion

Conclusion

W Possibility of using hb-graphs for highlighting networks
B Intermediate step of the process allows additional information

B Applications to develop:

B multimedia indexing
m information retrieval

B Strong basis to refine the approach of Xu et al. [2016]



Thank you

Questions?
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