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Background

Ideas behind

B Ranking of vertices in graphs
=> random walks

B RW for hypergraphs exist
B Diffusion = local process
=> knowledge of the neighbourhood.
B Study of diffusion process => Laplacian

B Incidence and adjacency matrices keep
only pairwise information

B Pairwise adjacency is too restrictive for
hypergraphs

B Higher order adjacency requires
tensor

B Laplacian tensor is linked to the
adjacency tensor

B Adjacency tensor for uniform
hypergraph is known Cooper and
Dutle [2012]




Our contribution

B Rigourous definition of adjacency in hypergraphs
B A proposal for an e-adjacency tensor interpretable in term of hypergraph uniformisation
B Two processes are designed:

H a hypergraph uniformisation process (HUP)
H a polynomial homogeneisation process (PUP)



Hypergraphs
From graphs to hypergraphs

Bretto [2013]:

— A hypergraph # on a finite set
v s X \{1 V ={v1; v2; ...; vn } is a family of

! / hyperedges E = {e1, e2, ..., ep } Where each
v, - (X v \ hyperedge is a non-empty subset of V.
v v, v, BB Two visions

3 \\\\\ N—
\\ B set of elements of power set of vertices
R4 ~ set view
Vs o B extension of graphs ~ n-adic

relationship view

B Hypergraphs = generalisation of graphs .
to multiple vertex links k-uniform hypergraph

W Hypergraphs introduced by Berge and All its hyperedges have same cardinality k.
Minieka [1973].




On adjacency |

In graphs

B Two vertices are said adjacent if it exists an edge linking them
=> pairwise relationship

B Vertices incident to one given edge are said e-adjacent.
=> also pairwise relationship

B e-adjacency and adjacency are equivalent in graphs



On adjacency |l

Extending to hypergraphs

m / vertices are said k-adjacent if it exists a hyperedge that hold them
=> multi-adic relationship

m Vertices of a given hyperedge are said to be e-adjacent.
=> multi-adic relationship

m /i-adjacency: maximal k-adjacency that can be found in a given
hypergraph

m In k-uniform hypergraph: equivalence k-adjacency and e-adjacency.
m In general hypergraphs: the equivalence doesn’t hold anymore!



Existing k-adjacency tensor for k-uniform hypergraph

Cooper and Dutle (k-)adjacency tensor

B ([Author’s note]: degree normalized k-)adjacency tensor: Cooper and Dutle [2012]
A= (anlk) Liroinn such that:

o - 1 1 if {U117“ Uzk} €E
i ool (k:—l) 0 otherwise.

B Allows to retrieve degree of vertices:

n

deg (v;) = Z Qiig...ip -

i, ip=1

B Allows to have hypergraph spectral theory Qi and Luo [2017]



Tensor for general hypergraphs: the art of filling

What about this?

s e ®

=> We need to store additional information



Existing e-adjacency tensor for general hypergraph

Banerjee e-adjacency tensor

Let H = (V,E) with V = {v1, va, ..., v, } and family E = {e1, e2, ..., ep}.
Let kmax = max {|e;| : e; € E} be the maximum cardinality of the family of hyperedges.
The ([Author’s note]: e-) adjacency hypermatrix of H written

Ay = (ail'”ikmax)lgil,u is such that for a hyperedge: e = {vlp~~~v“ls} of

cardinality s < kmax-

<n

Dtkmax S

— % wherea = Fnax!
IPLPhmax = o 4= Keil ksl
E1,... ks>l

Z ki=kmax
with p1, ..., Pk, chosen in all possible way from {i1, ..., [s} with at least once from each element
of {l1,...,ls}.



Why an other proposal?

B The e-adjacency tensor should be easily interpretable:

B in term of e- and k-adjacency
B in term of the way it is built

B Information on k-adjacency should be easy to gather
B Can we really fill a tensor without transforming its spectra?

Requirements

The tensor should be:

W invariant to vertex permutations either globally or at least locally.
W allow the retrieval of the hypergraph in its original form.

H the sparsest possible in between two possible choices.

H allow the retrieval of the degrees of the nodes

H store the information of e-adjacency and k-adjacency



Decomposition of the hypergraph in layers

Hypergraph ,/ 6"‘\ (ﬁs
Layers of an hypergraph
Fmax
B %= @ M His with no repeated hyperedge
k=1

B Family of Cooper and Duttle k-adjacency tensors (Ayg): Hy oA



Filling and merging

Iterative process on lay

Layer 1 is merged into layer 2

Merged layer 1 and 2 into layer 3

Merged layer 1 and 2



Hypergraph uniformisation process

Two elementary operations

B y-vertex-augmentation operation:
B add a vertex to each hyperedge of a given hypergraph
m y-vertex-augmented hypergraph Hz = (V,E, @) of Ha
H merging operation:
B merges two weighted hypergraphs Hq = (Va, Ea, wa) and Hy = (V, Ep, wp)
m obtained: merged hypergraph ?TL:A] = (X7, E, )

The hypergraph uniformisation process

B Transform each ;. into a weighted hypergraph H.,, x = (V, Ex, wi) wi(e) = cx
=> dilatation coefficient: keep the generalized hand-shake lemma

B [terates over a two-phase step:

H the inflation phase
m the merging phase



Moving to homogeneous polynomial

Symmetric hypermatrices and homogeneous polynomials

B Symmetric cubical hypermatrices are bijectively mapped to homogeneous polynomials
Comon et al. [2015]

B Use the hypermatrix multilinear matrix multiplication Lim [2013].
W Hy, =>Ay = (agiy...i, )
B (2) =(2,..,2) € R™MF, (2) [k]-Ax contains only one element:

Py (z0) = > Q(k)iy...ip2 L2
1<iq .. ig <
B As Ay is symmetric: Py, (z0) = Z k) iy...05 2i1 .2 with
1<i1 <. i<
Ok iq i = KOy iy iy



Polynomial uniformisation process |

Principle
A
(Ho) (A) i)
H . Family .
Hypergraph —> Uniform hypergraphs |—> of | Family of homogeneous
layers of H hypermatrices polynomials
77777 |
O
If k> 1:
|
|aR;:aexd Ry,... T Ri = ¢ Py, + Rp—1y* ™1 |
e-ad)'lacenc «— Global homogeneous = Homogeneous -
] y polynomial of H — polynomial of

matrix of 17 aggregated layers

of level 1to k

Figure 1: Different phases of the construction of the e-adjacency tensor



Polynomial uniformisation process Il

_ k (k+1) k-1 Zo
Ryt1(zx) = y (Rk <7yk(’“)) + k41 Pry1 (7?4’“ D) ))

n

n o
= Ry (zk-1)y" + k1 E Ak1Y iy ... g Lo R H



From homogeneous polynomial to hypermatrix

Definition of the hypermatrix of layer of level k

Ry, (w(k)) = . Z ) T (k) iy ... i) wzllc)wzllz) where:

W fori € [n]: wék) =zlandfori € [n+1;n+k—1]: wék) =y n

W forallVj e [k], for1 <i; < ...<i; <m,foralll e [[j+1;k]]1:il =n-+10—1and, forall
o € Sg:
_ GO Gaaeiy g
T(R)o(in).oin) = = g1 gl G4 i

W otherwise ry 4, ..., is null.

TWith the convention [p,¢] = @ if p > ¢



Layered e-adjacency hypermatrix

Choice of dilatation coefficient

km ax

to allow the generalized hand-shake lemma to hold.

ma
kmax z_: Z a’(]) 9185

DY yeney ij€[n]

when {vil,...,vij} € Eand0

We choose: ¢; =

1
|E| =

Q\»—l

kmax 5 z‘kmaxe[[wkmaxfl]]
Hence, combining above with the fact that a ;) ;
1

.A.ikmax = (kmax _ 1)|

. 1
il ool *m

otherwise: r;, for nonzero elements of Ry, .

Layered e-adjacency hypermatrix

Ry, is called the layered e-adjacency tensor of the hypergraph 7. We write it later A4, .




Properties

Finding degrees

It holds:

dig.. g o =0
where: Vi € [n] : d; = deg (v;) and Vi € [kmax — 1] : dpyi = deg (y;) .
Moreover: Vj € [2; kmax]:
{e : lel =3} = dntj — dnyj—1
and:
e« lel = 1} = dns



Spectral results

Bound for eigenvalues
Theorem

The e-adjacency tensor A4, has its eigenvalues X\ such that:

Al < max (A, A¥) (1)
where A = d;) and A* = dp+ti) -
jex () G,y ()

LetH be a r-regular2 r-uniform hypergraph with no repeated hyperedge. Then this maximum is
reached.

2A hypergraph is said r-regular if all vertices have same degree r.



Conclusion

Quick summary and Future Work

B Layered e-adjacency tensor is easy to build

B Can be stored in |E| elements as it is symmetric

B But inflates spectral bounds

B HUP and PUP: strong basis for further alternatives

W Target: allow repetition => multisets are needed => hb-graphs introduced

Ouvrard et al. [2018]



Thank you for your attention

Questions?
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